Coronavirus by the Numbers

Share this article

Numerical data sometimes reveal facts that are otherwise concealed within the rushing flow of information from an overwhelming number of sources.

Professor Ron Milo and research student Yinon Bar-On of the Weizmann Institute’s Department of Plant and Environmental Sciences, together with their US colleagues Professor Rob Phillips from Caltech and Dr Avi Flamholz from Berkeley, recently employed an original research method to organise the flood of coronavirus information in an orderly framework.

The scientists examined hundreds of studies carried out globally.

The initial stage required the scientists to understand the different measurement and estimation methods so that they could coordinate and translate all the findings into the same ‘language’ – an intricate task requiring great care. Here, the scientists’ experience helped them translate and consolidate a wealth of data and findings that they accumulated in previous studies: the number of cells in the human bodybiomass distribution on Earth, and more.

The research, which was fast-tracked to publication, can be found in the journal eLife.

One of the interesting findings that the collection highlights is the similarity between the coronavirus genome and the genome of other viruses. For example, the genome of the coronavirus is:

  • 96% identical to a coronavirus genome that infects bats
  • 91% identical to a coronavirus genome that infects scaly anteaters (pangolins)
  • 80% identical to the virus that erupted about two decades ago – SARS
  • 55% identical to the virus that erupted eight years ago – MERS
  • 50% identical to the coronavirus that causes “common colds”

The scientists also present accurate numerical data on the virus’s attachment to various organs in the body (bronchi, lungs, various types of cells, and more).

The study presents the number of copies and other quantitative features of virus ‘targets’, relevant for developing vaccines and pharmaceuticals that block the virus’s ability to adhere to and penetrate a human cell.

An additional part of their research relates to the virus’s mutation accumulation rate. This value is related to the chance (risk) that the virus will ‘bypass’ vaccines developed against it – and return to attack humans. The coronavirus’s mutation accumulation rate is relatively slow compared to influenza viruses. Milo cautiously estimates that this may indicate that drugs and vaccines developed by scientists will be more durable in curbing this virus over time.

 

Share this article

Latest news

Sensing Fat

Sensing Fat

New research from the Weizmann Institute of Science reveals that the nervous system can sense fat tissue and that blocking this ability protects mice from metabolic disorders. Popular belief holds that our senses gather information only about the external world, but...

Food: Friend, Not Foe – New Study Explains Why

Food: Friend, Not Foe – New Study Explains Why

Weizmann Institute of Science researchers have revealed the cellular network behind oral tolerance, the immune mechanism that enables us to eat food safely.  If we have an allergy to peanuts, strawberries or dairy, we are quick to blame our immune systems. But...

MRI Gets a Nano-Sized Upgrade

MRI Gets a Nano-Sized Upgrade

Weizmann Institute of Science researchers have achieved an MRI resolution of one billionth of a metre, paving the way for the most detailed images of individual molecules ever produced. This new development will play a major role in the materials and pharmaceutical...

Beyond Words

Beyond Words

Weizmann Institute researchers have revealed that the melody of spoken English functions as a distinct language, with a vocabulary and rules of syntax.  The findings lay the foundation for an AI that will understand language beyond just words. The AI revolution, which...

All embroidery colours

All embroidery colours

AI-based technology developed in Dr Liat Keren's lab at the Weizmann Institute of Science has shown it enables an unprecedented view of processes in body tissues. Artificial intelligence systems are working magic in many areas of the life sciences – they help decipher...